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1. INTRODUCTION

A computer simulation of a two rate gyro stabilized platform, laser
semi-active seeker is given here. The seeker, shown in Figures I and 2,
Is the Wide Field-of-View (WFOV) seeker developed for use In the Terminal
Homing Accuracy Demonstration (THAD) program. A thirteenth order seeker
dynamic model is studied and compared to actual seeker performance. The

method of Chen and Shieh~ll Is used to simplify this model to a second
order system. The simplified model was then compared to: (1) the
thirteenth order model, (2) a contractor third order model, and (3)
the actual system response. The agreement between the responses was
quite good and Is discussed.

This report emphasizes the digital programs used in this study
since they can be used for a wide variety of engineering applications.
These routines include a Runge-Kutta numerical analysis method, a
plotter package, a compound polynomial simplification process and a
transfer function order reduction program. A brief description of each
program follows with a sample problem Illustration where appropriate.

2. RUNGE-KUTTA DIFFERENTIAL EQUATION SOLUTION

To obtain the seeker response in the track mode, a fourth order
Runge-Kutta algorithm for the thirteenth-order servo system was used.
Figure 3 shows the differential equation solution program for the
seeker. All Initial conditions of the state variables XN(l) through
XN(13) were set to zero radians. The program was set up to print values
of the state variable in degrees every 10 msec using a Runge-Kutta time

Increment of h - 10 second.

To measure the seeker's tracking rate, a laser radiation source Is
set In a position which Is 3* from the seeker's caged line-of-sight. In
the simulation this angular error (ALOS a 3*) is Initially read Into the
program. Then at time t w 0 the seeler is switched Into the track mode
permitting a track command signal (SAMP , + 2v) to align the sensor head
with the source. At t - 45 ms, SAMP - 0 for a period of 5 ms In a
manner identical to the seeker's signal processor, Then at t - 50 ms
the seeker compares the ALOS error to the platform position XHI(I) to
determine whether SAMP will be positive or negative. This comparison
continues to occur at 50 ms Intervals to update the seeker head posi-
t Ion.

[I) C. F. Chen and L. S. Shleh, "A Novel Approach to Linear Model
Simplification," Int. J. Control, Vol. 8, 1968, pp. 561-570.
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The state equations FX(l) through FX(13) are taken from Figure 2,
and initially set equal to zero. The state equations are defined as:

x() x

FX(1) = dx/dt

FX(12) = d1 2 x/dt 12

FX(13) - d1 3 x/dt 1 3

Drift rates are entered simply by adding a term to the twelfth
state equation such that

FX(12) - I.E5/3.77 * (-8.58E-3 * X(02) X(il) + X(2) + DRIFT)

Similarly by making changes in the state equations In accordance with
the constants of Figure 1, either the pitch or yaw response can be
observed. The pitch response will be discussed throughout this report
although both cases were studied and found to be essentially Identical.

Pata cards are read Into the programs as follows:

1. IPPS - Pulses per second rate of laser Illuminator (IPPS a

20).

2. N - Order of differential equation (N - 13).

3. ALOS - Angular line-of-sight error In degrees (ALOS 3.0).

4. TN. H, XN(l) .. XN(13) - Initial time (TN - 0), Runge-Kutta

-4Increment (H w 10 ), Initial state variable conditions In
radians (XN(l) ... XN(13) are all 0).

These values are printed by the program for reference, as well as
the calculated sampling period (TSAN * .050 second) for SARP sign
changes.

3



3. PLOT PACKAGE

An easily used plot package Is included in the Runge-Kutta analysis
program to provide a graphic recording of the system response (Figure 4).
This routine provides a neatly labeled plot of up to five functions of
501 points each versus time, complete with grid lines and point-by-point
print out of the first two functions alongside the graph.

To use the plotter simply call PLOT (Y, H, NF, NS).

Y - the array of data to be plotted. The first function's
data is In the form Y(0,0), Y(2,1) ... Y(NF,1), with the
second function (if any Is to be plotted on the same graph)
similarly arranged as Y(1,2), Y(2,2) ... Y(NF,2), and so
on with as many as five functions.

H - number of functions per graph (up to 5).

NF- number of points per function beginning with the
initial conditions (up to 501 pot-t-..

NS - maximum upper limit of the ordinate axis.

It Is Important to remember that this routine plots from NS - 100 to
NS (e.g., If NS - 50 the ordinate Is labeled from -50 to +50; NS - 1UO
the axis Is from 0 to 100).

The Initial conditions of the platform output XNI(l) and SAHP
are loaded Into the data array elements Y(l,l) and Y(1,2) early In the
Runge-Kutta program at lines 53 and 54, while the remaining values of
these two functions are called Into the plot program by C(KK+l,l) and
C(KK+1.2) at lines 126 and 127.

The plot parameters used In the Runge-Kutta program are given as,

H - 2 for the two functions to be plotted voirsus time on
the same graph, XNI(!) and SA4P respectively.

NF a 401 for a total of 401 points per function.

NS w 50 normally labels the graph from -50 to +50. A
discussion of the use of NS with scaled functions will
be given In the next section.

Some computer systems, such as the CDC 6600, may not properly
execute the plot program unless the Y data array dimension statements
are the same In both the main program and the plot subroutine. Further-
more, the Y array may have to be dimensioned Y(5,5OI) rather than
Y(501,5) depending again on the system being used. Of course any
desired Increase In the maximum number of functions or points to be
plotted can bt made by simply Increasing the data array dimension
statements In the two programs.

4
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4. USE OF THE PLOT ROUTINE WITH SCALE FACTORS

Any function(s) may be scaled for clearer graphical display by the
plot subroutine. This requires the simple change of only the plot data
array cards and an ordinate axis labeling card within the subroutine.
A description of the steps used to scale the platform position XNl(l)
follows which serves as a guide for any scaling that may be desired.

(1) Referring to lines 53 and 126 of the Runge-Kutta program,
the platform angular position was multiplied by a scale factor of 10
to show its relationship to SAMP more adequately. Thus the data array
cards for the initial condition and all subsequent values of XNI(I)
become respectively

C(ll) - 10. * XNl(l)

and

C(KK + 1,1) 10. * XNI(I)

(2) Line 18 In the plot routine was changed to label the ordinate
axis according to the scaled platform function. Normally this line would
read

101 L(I) - 10 * I - 110 + NS

labeling the ordinate axis from NS - 100 to NS. However, since X0i (1)
was Increased by a factor of 10, the axis scale had to be reduced by
the same factor, Thus line 18 becomes

101 L(I) a (10 * 1 - 110 + NS)/lO.

which now labels the ordinate from (NS - 100)/10 to NS/10, Note that
NS - 50 in the main program since the scaled values of XNI(I) range
from 0° to approximately 30'. The change In line IR of the plotter
now expands the ordinate from -5 to +5.

(3) Line 52 In the plot routine rescales XNl(I) to its original

values for printing along side the graph. Thus,

Y(NoL) -Y(N,I)/1O. :

Note that SAMP was not scaled to a larger value and therefore
does not correspond to the ordinate label. However this Is unimportant
since only the sign of SAWP rather than Its magnitude Is of Interest
here.

SS
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5. POLYNOMIAL SIMPLIFICATION ROUTINE

It is often a long and tedious process to obtain the total poly-
nomial transfer function of r ,nplex systems. Many times the simpli-
fication of such systems Is ,-ft In a form which Is a long combination
of polynomial sums and products. The following program (Figure 5) is a
useful means of executing the addition and multiplication of these
polynomials in order to produce a transfer function of the form

Pma + Pms m-l + + Ps +s P
F(s) anm in-I 1 0

sn + %_isn-i + + Q s + %

Let the system transfer functiop be in the general form of a quo-
tient of two compound polynomials

F(s) -(A 1 + A2 + ... + AM)(B)

(C1 + C2 + ... + CN)(D)

where A1 , A2 ... AM) B, C%, C2 ... CN, 0 are themselves products of
polynomials and constant factors. For example, A1 might be a product of
two polynomials and two constant factors such that

A1  KiK 2 (a 3 s 3 + a1 2 s 2 +8118S a+o)(a 2 1 s + a2 0 )

The operation of this program is rather straightforward. First the
A polynomials are solved (if any are present), then added together and
finally their sum Is multiplied times the B polynomial product. The
resultant numerator Is printed giving the order of "s" and Its coeffi-
cient. The denominator polynomials are handled In the same manner.

The following sample problem Illustrates the use of data cards for

this program.

Let

4 3 2 2
s 5(s!-2s +2s +s 1)(s +2)

U(s'* + 2s -3)(s + 2) + 20(s 3 2)(5 + I)1s- 35 + 1)

6

I4

* J~--



whe re
B re5(Vs - 2s 3 + 2s2 i)(s 2 + 2)

C - (s2+2s - 3)(s+2)

C2 - 20(s3 - 2)(s + 1)
2

D -s -3s+l

Data cards are read In the following order beginning with the A polynomials
if any are present (Figure 6).

1. NA Number of A polynomials which must be added.
Since there are no A polynomials here, NA - 0
and we now consider the B polynomial.

2. NP, KK Number of polynomials to be multiplied In B and
the number of constant factors respectively.
Here, NP - 2 and KK a 1.

3. K(I) Constant factors in B (other than 1.0). If no
constants are present, simply omit this data card.

4. NI Order of the first polynomial to be multiplied In
B. Since the first polynomial Is fourth order,
NI 4.

5. POLY 1(I) Coefficients of the first polynomial factor begin-ning with the highest order "s" coefficient. This
card reads: I.EO -2.EO 2.EO |.EO -I.EO).

6. N2 Order of second polynomial factor in B. N2 - 2.

7. POLY 2(i) Coefficients of the second polynomial. This card
is ).EO O.EO 2.EO.

8. NA Number of C polynomials In the denominator. NA 2.

9. NP, KK Refers to C1. Here NP - 2 and KK * 0.

K(I) Since KK 0 0, this card Is omitted.

10. Ni Or~er of first polynomial to be multiplied In C1.

11. POLY 1(0) Refers to C.

(:7
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12. NZ Refers to C1.

13. POLY 2(I) Refers to C1.

14. NP, KK Refers to C2 .

15-19. Refers to C2 .

20. NP, KK Here NP w 2 (includes the C polynomial sum and the
D factors). KK - 0.

K(I) Since KK = 0, this card Is oa:itted.

21. N2 Order of the first D polyrnomial factor. POLY 1(I)
Is the sum of the C polynomilals which Is stored In
the program. No cards are needed for POLY 1(I)
following the addition of A or C polynomials. Here
the first D polynomial is second order, so N2 = 2.

22. POLY 2(i) Coefficients of the first D polynomial factors.
This card Is I.EO -3.EO I.EO.

Referring to the seeker block diagram It Is apparent that the trans-
fer function up to the platform rate output Is of the twelfth order. In
some cases It may be of Interest to monitor the tracking rate of the
platform as well as Its actual position. For this reason a twelfth order
system polynomial was obtained using this program and the data cards In
Figure 7. Finally, It became desirable to reduce this rate portion of
the syster, to a second order approximation model for easier design natni-
pulatlon. The following program was used to this effect.

6. REDUCTION IN ORDER FOR A DIFFERENTIAL EQUATION

This program reduces the order of an nth order differential
equation by expanding Its s-plane polynmial into a continued fraction
and truncating certain of Its quotientsl]. The remaining expansion
quotients are then used to write all the lower order polynomials beginning
wIth order n - I.

The high order polynomial Is Initially arranged In ascending order,
beginning with the constant terms.

P + s + P2 s2 + + P smF(s) - O .. ..P s"

%Q + Qls +Q2s +..Qns
From this polynomial the program calculates and prints the 2n contiued
fraction terms (e.g., a 12th order equation has 24 terms).

8
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F(s)- 1

H1 +

"H2  1

s

H3 +
H4  1

•+
S

H24

S

To derive an approximation of order w, only the first 2w terms are
retained for a reversal of the expansion process which yields the lower
order polynomial. For a second order model of the twelfth order seeker
platform system, the first four continued fraction terms were saved
so the:

F(s)

34.474 +

-6.8275 +.
5

-3.057 +

20.732
S

which produced

13.904s + 432.71SF(s)

S2 415.96s + 14917.6

The program Is designed to print the terms of the original system
and all of Its lower order approximations In ascending order.

Data is easily read into this program as Figure 9 demonstrates.
The only restriction Is that the d-,nominator Is assumed to be one order
higher than te numerator for execution of the continued fraction process.
This condition is satisfied by the Introduction of "dummy" data terms.
For Instance the WFOV seeker platform polynomial has a 9th order numerator
and a 12th order denominator such that

9
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9F() PO + P IS + '"+ P 9 s
F(s) -

O + Q1s + ... + Q12s

To make the numerator one order less than the denominator simply enter
zero for the numerator slO and sll coefficients so that

P0 . +".+ P9s9 + Os1 O + Osll
F(s)* ~)=9 10 sli 12o

0 + Qls + Q.0 s9 + QOs10  + Q11s + Q12s

Referring to Figure 9, data is entered for the seeker platform as
fol lows.

I. NN - number of terms in the numerator. NN = 12.

2. A(M) ... A(NN) - coefficients of the numerator In ascending
order beginning with the constant term. Note that A(1l)
and A(12) are dummy (zero) terms.

3. B(O) ... B(ND) - coefficients of the denominator In ascending
order beginning with the constant term ND = NN + I (reference
line 19 of the Figure 8 program listing).

7. RESULTS

The thirteenth order model of the WFOV seeker yielded an accurate
simulation of the seeker's time response to a 30 line-of-sight error,
As expected, the model demonstrated a 3*/sec tracking rate with an input
forcing function (SA}P) correction every 50 ms (Figure 10). The state
equation set up for the seeker is given In Figure 2 as equations FX(1)

dx dX2 dxthrough FX(l3), where FX(I) Z- , FX(2)
thrug 0 etc.

dt

A polynomial transfer function was then derived from the servo
block diagram and Is given as

1) 69 8*8Pe P6 %6 + P50 P4%1I *P3- ,p 2 0 pDlotP ID1411 q •}, 4 "to , q9% , 4 6 1 5 S•p I 3 12 (12 pj 9| ÷qi~tIs * q11I1 ÷ IO 0 qt ÷ t , ?l . q61' ÷ ' qsI + *ll÷ql• ql=÷q . * --S•:

10
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where

q12 1.265(10-23)

qll , 3.327(1019)

ql0 , 2.084(1015 )

P9  1 l"556(10'5) q9  5.703(10 2 )

P8 " 3.340(10"11) q8 - 7.968(10"9)

P7 - 8.450(10'8) q7 ' 5.966(10-6 )

P6 - 7.229(10"5) q6 - 2.440(10"3)

P5 - 2.424(0-2) q5 - 7.930(10"1)

P4 - 4.811 q4 - 1.625(102)

P3 - 5.802(102) q - 1.965(l00)

P2 - 4.495(i00) q2 - 1.493(106)

-6 7.i(1~PI " 1.909(10 ) q -- 6.11607)

PO - 3"178(107) qo - 1"095(009)

The twelfth order polynomial represents the system up to the platform
rate output while the final r Integrator provides the platform position
(reference Figures 1 and 2).s

The twelfth order polynomial was reduced to the second order approxi-
mation

13.904 + 432.71
s + 415.96s + 14917.6

and Is shown In Figure 11 as part of a third order system model. Thestate equations for Runge-Kutta Integration of this system are

.!+: II
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FX(3) = SAMP - 415.96 X(3) - 14917.6 X(2)

FX(2) = X(3)

FX(l) = 13.904 X(3) + 432.71 X(2)

The third order approximation accurately demonstrated a 3°/sec
tracking rate, however its forced platform sweep generally remained
below a 30 position and was equal in magnitude but 1800 out of phase
from the higher order system (Figure 10).

The discrepancy between the two models was due to the slight lead
of the third order system. For instance at time t = 1.1 second the
platform positions of the thirteenth and third order systems wern
2.99992 and 3.00528 respectively. Consequently SAMP remained positive
for the first system but changed to a negative value for the latter
system causing It to decrease in value. This out of phase relationship
maintained itself throughout the entire forced switching mode.

Dispite the above-mentioned minor differences the lower order model
as a whole proved to be a sufficiently accurate representation of the
thirteenth order system. This confirms the validity of the continued
fraction expansion process used in the fourth computer program to derive
lower order systems.

A third order model provided by the seeker vendor (Figure 12) had a
slower 2.71°/sec tracking rate. However after the seeker platform
reached the 30 position at 1.1 seconds, its performance was very close
to that of the thirteenth order system (Figure 10).

The state equations for this approximation are

FX( - .4(11700(SAMP - X(2)) - X(3))

FX(2) - X(3) + .026316 FX(3)

FX(l) - X(2)

It should be noted that the state equations and state variables for the
vendor system are already given In units of degrees rather than In
radian measure which was used for the other two models.

The Introduction of both constant and time-varying drift rates up
to O.1/sec peak value had little effect on the models' responses.
Greater drift rates, however, caused failure of the SAMP forcing func-
tion for the 13 th order model to switch signs at the end of every 50 ms
interval (multiple pulsing) as well as a reduction In the tracking
speeds of that system. The vendor model was not adversely affected

12



even with drift rates as large as 5°/Sec. In actual system performance
the seeker would be unable to cope with such large drifts, which indi-
cates the failure of the vendor model to properly simulate internal
friction effects.

Drift was entered into the 13th order system by the state equation

, • 105
FX(12) (-.00858 X(12) - X(Ol) + X(2) + DRIFT)

and for the vendor model

FX(2) X(3) + .026316 FX(3) + DRIFT

The in-house third order approximation was not considered for drifting
since its response had so closely approached that of the thirteenth
order system.

8. CONCLUSIONS

A description of four computer programs for the simplification and
analysis of a discrete data tracking system has been presented. These pro-
grams are demonstrated via the solution of the step response of a laser
semi-active seeker. The programs are general and should require minor
modification for study of other seeker systems.

13
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C SOLUTION OF A DIFFERENT.IAL EQUATION USING TH-E RUNGE-KULTTA METHOD
C
C IPPS = PULSE REPETITION RATE (PPS)
C TSAM =SAMPLING PERIOD (SECONDS)
C N =ORDER OF DIFFERENTIAL EQUATION
C ALOS = ANGULAR LINE OF SIGHT ERROR (DEGREES)
C TN INITIAL TIME (SEC)
C H RUNGE-KUTTA TIME INCREMENT (SEC)
C XN(l) ... XN(N) =STATE VARIABLE INITIAL CONDITIONS (RADIANS)
C FX(1) ... FX(N) STATE EQUATIONS (RADIANS)
C

DIMENUSION XN(20),X(20),q(2O,20),FXf20),ICOUNT(2O),XNI(Ž>O),Y(501,5)
68 FORMIAT(22X(,6(3HXN(,I?,IH),p9X),4H$AMP)
69 FORMAT(16X.1P7EIS.6)
70 FORMAT(IHI)
81 FORMAT(aIJ3)
83 FORMAT(SE15.7)
8b FOFhMAT (IN, PEI4.S. IP7EIS.6)
87 FO)4MAT(///7X.4HTTME*jOX.7(3l$XN(.IIIH).JOX))

READ(5,81 IIPPS
READ (5,81lN
RE'AD(5483) ALOS
READC5.83) TNHvdXN(NN)fNN=I*N)
WRITE (7e7ri)
WRITE (7.81) IPPS
WRITE(7.81) N
WRITE(7,861 ALDS

C CONVERT XN (RADIANS) TU XNI (DE6GiEE5)
DO 55 IQ 2.N

55 XNI(10) XN(IQ) 457*2958
WRITE(7.86)TN.H, (XNI'(NN) ,NN~i.N)
NCOUN=0
PPS=FLOAT(I PPS)
TSAM=I ./(PPS*H)
W$RITE(?-86) TSAm

C nf.FINE THE INPUT FORCING KLUNCTION
IF( AIDS - 57.?958*XN(I)l 602000?.803

802 SAMP =-.
GO TO 804

803 SAM9P=2
C WRITE THE HIEADING AND INITIAL CONDITIONS

DO 88 Ix=IN
88 ICOUNT(IXI=IX

WRIYEf7,87)tTCOUNT(IX)OI)(=l*?)
WRITE(7,68)(ICt)lJNT(IX),IX=8*1)J
WRITE(?,86)TN.(3cNI(NN)jNN=1q7)I
WRITE (7,69) (XNI (Nll) ,NI I=8.3) .S)4mP

C CLEAR THF STATE EQIAThINS
804 009 "=)IN

S FflM)=0.O

C THSLOADS Yi* INITIAL CONDITIONS IiiTO T.IE Y UArA ARRAY

Y(.?l=SAMP
Y(,3)-X(3)+..S*sA

FIGURE 3. LISTING OF THE RUNGE-KUTTA SOLUTION OF THE
THIRTEENTH ORDER MISSILE SEEKER SYSTEM
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I. RUN PROGRAM UNTIL TIME TN H *KKOKW SECONDS

C PROGRAM PRINT$ EVERY TIME -TN =H*KW SECONDS
D0 200 KW=19100

I L1I
T=TN

C SET STATE VARIALBES EQUA~L TO THEIR ITERATION VALUES
00 777 KIoN

777 XtKI=XN(K)
GO TO 101

10 00 151 K=19N
l11 Q(KL)=H*FX(K)

T=TN+H/Z.
00 252 K=IN

GO TO 101
20) 00 251 KI~=.N

251 O(KIL)=H'*FX(K)
T=TN.H/2.
DO 352. K1ItN

352. X(K)=XN(K)*Q(K.L)/2.
L=3
GO TO 101

30 00 351 K=I*N
351 Q(?CL)=H*FXCK)

T=TN*H
DO 45Z K=10N

452 X(K)hXN(IM)*Q(KL)
L=4
GO TO 101

40 00 45) K=1,N
451 Q(l(KL)--H*FXU()

GO TO 7
C STATE EQUATIONS FOLLOW

Fx(6) !)17)

FXV )=xM.(24
6.0 TO (1o,20oJO,401.L

I. TN=TN.tt
00o i K=I*N

FIGURE 3. LISTING OF THE RUNGE-KUTTA SOLUTION OF THE
THIRTEENTH ORDER MISSILE SEEKER SYSTEM4 (Continued)
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IF

SAMP=0.
210 IF (NCOUN .LT. 500) GO TO 200

IF( ALOS - 57*2956*AN(1)) 902,990,903
902 SAMP = -2.0

NCOUN=0
GO TO 200

9n3 SAMP 2.0
NCOUN 0

200 CONTINUE
C CONVERT XN (RADIANS) TO XNi (WEGREES)

00 503 IQ 10N
503 XNI(IQ) = XN(IQ) -57.2958

C PRINt THE FINAL SOLUTION OF THE STATE VARIABLES
WfITE(7t86)TN,(XNIfNN).NN=Is7)
WRITFE(769u(XNI(NII)jN|I=pII),SAMp

c TTHIS SCALES THE INPUT OATA APRAY FOR THE PLOT ROUTINE
Y(KK*Isl) ) 10.<XNI(1)
Y(KK*.12)=SAMP

Y(KK+1,3)-GUID
201 CONTINUE

X-2
NF-401
NS-50
WRITE(7,70)
CALL PLOT(Y,M,NF,NS)
STOP
END

FIGURE 3. LISTING OF THE RUNGE-KIJTTA SOLUTION OF THE
THIRTEENTH ORDER MISSILE SEEKER SYSTEM (Continued)
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SUBROUTINE PLOT(YM.NF*NS)
C Y =ARRAY OF DATA TO BE PLOTTED, WHICH IcS READ IN THE FORM
C Y(191) *.. Y(NF,1)? V(1*2) ... YCNF,2) ... Y(IoM) ... Y(NF*M)
C. M = NUMBER OF PLOTS
C N NUMBER OF PLOTTED POINTS ALONG ABSCISSA, BEGINNIN4G WITH THE
C INITIAL CONDITIONS AT TIME T¶ 0
C NS = MAXIMUM UPPER LIMIT OF ORDINATE (ROUTINE PLOTS FROM NS-100 TO NS)
C

DIMENSION Y(S0I,5)*LINE(1O1)9LCII)qJL.(5)
DATA JL(1),JL(4),JL.(3),JLf4) .JL(5)/1HA,1BIH89tCIHD1HV/,,JN,.JPJI,
IJFLANKJZ/1H-,IH.,H~IHIN ,H$/

99 L.INC(l)=J8LANK
NN=0
Ncl1

C LA~BEL. THE ORDINATE AXIS
DO 101 1=1011

IF (M-2) 103.104,104

)05 FORMAT (2Xs11 (I4v6Y.1IXt6HY(N,11 I
GOQ TO 115

104 WRIJE(7*10b) (()I.i
106 FORMAT (2A,11(lit,6X),iX,6HYCN,1),?X,6HYfN,2)I

60 To Hs5
110 IF (NN-10) 125-115.I115
115 wir-OO

DO 120 I1=111
ND=NO.1
LINE (ND) -JP
DO 120 J=199
NOzND' 1

120 LIME (ND)=JN

60 TO 1316
125 00 130 1=1,101pl0

U C#ANCUE NUMVRICAL UArA 10 LETIVI45
135 Do 160 1=19m

KNSvNS

IF IJA-101) 140*6'5%144
11-0 Ir (JAI 15 0 *IS 0 s1 Vej
I'll LINE tlO1l:JZ

W~ To 160

GU TO 160

160 CONTINUL

C fIHES RESýCALES Y(NtIlY(PJs?) T0 ORIGINAL VALULS

It (ti-2) 163sl?3*17'3
163 1V(AW) 165.165*1?5

FIGURE 4. LISTING OF TrHE PLOTTER PACKAGE



165 WRITE(7,166) NC.LINE*Y(Nil)
166 F0RMA7(14slX-j0lAl.IPE13.5)-,

GO TO 165
170 WRITE(7*171) LINE9Y(N11)
171 FORMAT (SX9 10 1A I * PE 13*51

GO TO 185
173 (F (NN) 175.175*180
175 WR1TE(7t176) NCL.lNE9Y(NqIi.Y(N*2)

176 FORMAT(14,1X.(01A) 1P?-El3.5)
GO TO 185

160 WRITE (7,181) LjNEYfNsIC vY(N%2)
161 F0RI4AT(5X(.1QlA1~lP2E13.5)
185 D0 190 J:1,1Ol
190 LINEM=l~JBLANK

NN=NgJ~l
195 NTN.I

IF 19-NV) )IG0lLO.0O2
200 REAURN

END

FIGURE 4. LISTING OF THE PLOTTER PACKAGE (Continued)
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.. .. . ...

THIS PROGRAM SOLVES COMPOUND SERVO SYSTEM POLYNOMIALS OF THE FORM
C (Al + A2 .. AM)(1)
C --- - - - - - - - - -

C (C1 + C2 + . .. CN) (D)
C WHERE Al, A2t ... AMv B, Cl. ... CN, D ARE PRODUCTS OF POLYNOMIALS

C AND ANY CONSTANT FACTORS*
C THE PROGRAM FIRST SOLVES THE "A" POLYNOMIALS, ADDS THEM, THEN

f MULTIPLIES THEIR SUM TIMES THE "B" POLYNOMIAL PRODUCT.
r THE PROCESS IS REPEATED FOR TIHE DENOMINATOR

C NA = NUMBER OF "A" OR "C" POLYNOMIAL PRODUCTS TO BE ADDED
C NP = NUMBER OF POLYNOMIALS TO BE MULTIPLIED
r KK = NUMBER OF CONSTANT FACTORS
r NI = ORDER OF' FIRST POLYNOMIAL-
C N2 = ORDER OF SECOND AND SUCCEEDING POLYNOMIALS
C

C DATA IS READ IN AS CONSTANT COEFFICIENTS IK(i),1(2)} ETC. WHICH ARL.

C. FACTORED OUTSIDE OF THE POLYNOMIALS-
C THEN AS (NI+l) COEFFICIENTS OP THE FIRST POLYNOMIAL 9EG1NNING WITH
C THE HIGHEST ORDE0. "S" COEFFICIENT,
C COEFFICLENTS OF SECOND OR SUCCEEDING POL.YNOMIALS BEGINNING WITH
C THE HIGHEST ORDER "S" COEFFICIENT.
C FINAL POLYNOMIAL IS PRINTED LISTING DEGREE OF S AND ITS COEFFICIENT
C

DIMENSION A(2020),POLY](20),POLY2(20),P(20,,iO, T(20)
REAL KPK(20)

1 cORMAT(213)
2 FORMAT(IP8EIO.3)
3 FORMAT(5H 5-.-I32X.lPEI6.6)
4 FORMAT 19H POLYNOMIAL NUMBI'R,13t8H FOLLOWS)
S FORMAT(!6H PRODUCT NUMBER7I130H FOLLOWS)
6 FORMAT(18H CONSTANTS FOLLOW)
7 FORMAT(38H POLYNOMIAL NUMBER I TIMES CONSTANTS)
8 FORHMAT(//36H FINAL PO',YNOMIAL NUlFWRATOR FOLLOWS)
9 FORNAI(//38H FINAL POLYNOMIAL DENOMINA'IOR FOLLOWS)

10 FORMAT(IHI)
DO 300 JJJ=1,2
READ(5,9) NA
DO 20 4=1,20
DO 20 J=l.a0

20 P~lqd):=O.

NB=O
IF(NAEQO) NA=l

30 O0 1O0 Ji1=1,NA
READ(bil) NPKK
IPOLY=1

iF(KK.EQ,0) GO TO 50
READ(SP2) (K(I)# ,I=|,KK

WRITE(6,6)
DO 40 1I.-KK

|1zh O ( '
40 WRITE(6idl K'I)
50 IF(NB.*Q.I) GO TO 55

FIGURE 5. THE POLYNOMIAL SIMPLIFICATION PROGRAM
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READ(5t1) NI
NPA I=N 1 +

55 WRTTE(6t4) IPOLY
00 60 1=1.NPAI
T0=NPAI-T

60 WRITE(693) 10.POLYI(1)
WR ITE (6, 7)

70 Do 80 1=1,NPAI
ID=NPAI- I
POL.Y1(I)KP*POLY1 (I)

so WRITE(6,3) 10,POLYI4I)
ISUB=NP-'.
Do 100 J=1.ISUB
REAO(S1l) N2
NPA2=Na.
REAU(5,2) (POLYa(I).lI*NPAa)
IPUt.Y=IPOLY+l
WRITE (6,i) IPOLY
DD 90 I=1.NPA2
ID =NP A2- I

90 WRTTE(6,3) I0,P0LYZ2(T
CALL POLSET (NPAl*NPA29,APOLY1,POLYZ)
TT(JJ)=NPAl
IPROD= IPOL V-l
WRITE(695) IPROD
DO I0U I=INPAI
!DrNPAI-l
P II D+I. JJ) =POLYI (1)

100 WRITIE(6s3) IDPOLYItI)
1F(NA.ECQ.1) GO TO .?00
CALL POLADD (N~AsP.UIfP0LYl.NPAl)
NA=1

60 TO 30
200 IF(JJJ.EQ.2) G0 TO 210

WRITE (6.8)
GO 70 220

210 WRITE(6%9)
220 UO a30 I1=10PAI

ID=NPA I-I

WRITE (6& 10)
300 CONTINUE.

STOP
E.ND

SUBIiJOUTINE POLSE.T (NI9N2vAPOLl9P0L2)
DIM&ENSION A(20sZ0)sPOLU(2O)*P0L2(20)
NNtNl*N?-I
00 11 1-II4N
00 11 Jn)WNN

00 21 Kt1,NI

FIGURE 5. THE POLVN0141AL SIMPLIFICATION PROGRAM (Continued)
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Do 31 I1=1,NN

DO 41 I=1WNN
DO 41 K=19NZ

I1 POLl (T)=POL1 (I')+A(IK)*POLa(K
N3 =NN
RETURN
END

SUBROUTINE POLADO (NAsPtITADD, ICOUNT)
DIMENSION PC20s20)#I7CZOJ tADD(20)
LCOUNT=IT( 1)
DO 1-- I=ZNA
IF(ICOUINT.GE.IT(I)) 60 TO 12
!COUNT=IT (I)

12CONTIN~UE
DO 2? 1=i,?D

22ADD (I) =O.
DO 3Z I1],TCOUNT
ID=LCOLJNT-1.l
0O 3a J=1,NA

3Z ADD(ID)=ADD(IDl*PI.QJ)
RETURN
END

FIGURlE 5. THE POLYNOMIAL SIMPLIFICATION PROGRAM (Conntined)
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11

0 NI A
7 6 NP KC

I.EO 1.52EO 9.4E0 1.El 5.56E5 4.E-1 WTI wN I2 til
7.700E-5 8.520E-3 I.EO

7.220E-4 I.EO
I I
5.330E-2 I.Eo

Z1
a

3.. 770E-5 8.580E-3 I.EO
3 tAR 4 ( r- .-

10 2 P, KY
8.8E 0 1 .080E4.~~PtT (~* .K~

4.E-4. I.EO p" %

I.EO O.Eo r% ul

4.93E-3 I .EO

t •.97E-4 I . O

5.92E-3 I.EO

2.5EO I .EO

I 0.SE-3 *.EO

7,22E-4 1 Eo

S~5.3uE-5 I t o
• ~2

"3,77I-5 8,58E-3 I.jO
4 9 uP,Ky"

I.Eo 1.520 9.40F0 LI.E 7 .98F0 ).?E0 9.E-1 1.6E0
5.56ES O &YRNT& ti Kt k) vtt2 I4t

7°70E-5 0,52E-3 I.EO Pat1

: 2033E-? I ,EO

4,J3E-8 I.205E-6 I-EO

FIGURE 7. DATA FOR SIMPLIFICATION OF THE TWELFTH ORDER POLYNOMIAL
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i

8 2• t4P , KK

] ~NlS.65 .Ea .NHhr j.
4.93E-3 t.o

4.97E-4 I-EO
5#92E_-3 I *EOI a '

2.SEO 1.EO

I.05E-3 ).EO

7 .22E-4 I.EO

S5.35E-5 1 .EO a

3.77"E-5 8.58E-3 I.Eo
2 0

FIGURE 7. DATA FOR SIMPLIFICATION OF THE TWELFTH ORDER POLYNOMIAL
(Continued)
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C CONTTNUEO FRACTION EXPANSION AND REDUCTION IN ORDER OF AN N-TH ORDER
C TRANSFER FUNCTION

C NN = TOTAL NUMBER OF TERMS IN THE NUMERATOR
( A(1)...A(NN) = THE COEFFICIENTS 0• THE NUMERATOR BEGINNING WITH
C THE CONSTANT TERM AND INCREASING IN ORDER
( NO = TOTAL NUMBER OF TEPMS IN THE DENOMINATOR
C B(t)...B(ND) = THE. COEFFICIENTS OF THE DENOMINATOR BEGINNING WITH
! THE CONSTANT TERM AND INCREASING IN ORDER

C

C FINAL REDUCED ORDER TRANSFER FUNCTIONS ARE PRINTED AS
r AO + Al*S +2 * + A3*S~'3 *...* + Am*S**m

CC 80 + Bi*S + a2*S**Z + 83*S**3 BN*** ,

DIMENSION A(200).B(2OO).H(200)
READ(5OSO0) NN

500 FORMAT(I.5)
ND=NN+1
READ(5,501) (A(I),L=INN)
READ(5*501) (B(1),I:1,ND)

501 FORMAT(4E20.6)
L=O

2 L=L+.l

WRITE(6,604) LvH(L)
604 FORMAT(/2X,2HH(,12i3H) =oLPE16.6)

A(NO)=O.

NO=ND-1
DO 10 I'1,ND
B(I)=A(I)

10 A(T)=B(II)-A(II)*H(L)
1 L=L.1

H(L)=B(I)/A(l)
WRITE(6.604) LH(L)
IF(ND.EQ.1) GO TO 3
NDvND-)
00 20 I=IND
Bf 20 A A(I)

NDtND÷I
B (ND) =A(ND)
GO TO Z

3 MtM=2*NN
"CALL MRML(MMiH)
STOP
END

FIGURE 8. LISTING OF THE TRANSFER FUNCTION ORDER REDUCTION PROGRAM
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SUBRt)JTINE MRN4L(N,1-)
DIMENSION HR(30,30),TR(30,30),T(30,30),D(30),TL(30.30).C(30),H(30)
DO I I =ItN
DO I J = .N

I HR(I,J) = 0.
DO 10 J=1.N
DO 20 L1.-J
?iR(L#L) = H(J+1-L)
IF(L.Eq.N) GO TO 22
TF(J+1-L.EQ.1) GO TO 21

21 JI=J.1
DO 30 1=J1,N

30 HR(T.I) = 1.
22 TF(J.GT.1) GO TO Z3

00 40 11 = t
DO 40 .J1 = 19N
T(I1,JH) =I-dR(I1.J1)

40 HRCUqJl) =0.
GO TO 10

23 CALL MALTP (NtNiHRiNqT.TR)
0O 50 TI = 19N
DO 50 JI =19N
TC11,JI) = TR(II.J1)

50 HR(T11Jl) =0.
10 CONTINUE

DO 110 J=1*N
00 120 L=1,J
IF(J.EQ.l) GO TO 121
HRCL.L) =H(J#1-L)
IF(J.1-L.EQ.2)G0 TO 121

120 HR(LL+I) =1.
121 D0 130 I=JtN
130 HR(li,) =1.

!F(J.GT.1) GO TO 123
DO 140 11 lN
DO 140 .J1 lN

.140 HR(I1.JI) =0.
G0 TO 110

123 CALL MALTP (NN#tiR#NsTtTL)
Du 150 11 19N
DO 150 JI c19N
T(I11011 TL(11*Jl)

1SO HR(11.,J1) =0. -

110 CONTINUP
DO 200 11,tNsZ
L 0
DO 210 J=19N
L =L+I
D(L) TR(I*J

210 C(L) =TL(1.J)
NT =fN-I+W2+I.
NT1 = NT-I
CALL ISE(NTr'-lDC)

200 CONTINUE
RE TURN
END

FIGURE 8.LISTING OF THE TRANSFER FUNCTION ORDER REDUCTION PROGRAM
(Continued)
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SUBROUTINE MALTP(NiMiA#L4BiC)
DIMENSION A(30,30),B(30v30),C(30,30)

DO 10 I=10L

0O 0 130 K= 3 3 (303

SUBOU~MTINE,18E 15.6C)

I----------------------------------------------------------------

NI=N.1
WRITE (69600)

20 WRITE(6*602)
WRITE(6,601) (O(I)*I~lNl)
NX =N
DO SO 1=112
DO 51 J1,tN
NJ=NX-2* (J-1)
IF(NJ.LE.O) T(14J) =0.

Si IF(NJ.GT.O) T(IJ)=D(NJ)
50 NX=Ns1

DO 60 I~lvN
00 60 Jrl,N
DO (I 4,J) =0.

60 DN(I.Ji=0.
L=O0
LL=O
LJ~ 1
DO 70 I=1dJ

IF(L.EcQ.3) LJ=LJ.1
IF(L..EQ.3) L~l
DO 71 J=LJiN
LL=LL.1

71 DN(T1.3))-T(LqLu
70 LL=0

00 80 lm1,NZ
80 Gfl)=O.

L=0
LL=O
00 81 I1=1N
00 82 J=ItN .

81 LL=LL*1

FIGURE 8. LISTING OF THE TRANSFER FUNCTION ORDER REDUCTION PROGRAM
(Continued)
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00 90 J=],N
JJ=2*(N-J) +l

90 DN(1.J)=G(JJ)
CALL TNvER(DNNqFt,0,flTN)
CALL TNVER(DONvFvO*DETD)
XI=(-1.i**(N-1)/(Z.*D(Nfl)*DETN/DETD
RETURN
END

SUBROUTTNE INVER (AiNBm*DET)
DIMENSION A(3O,3OtB(30.30).IPVOT(30.1INDEX(3O.3)PIVOT(30
EQUIVALENCE (IROW*JROW)t.(lCOL.,JCOL)

57 DETr1.O
DO 17 J=1,N

17 IPVOT(J)=0
DO 135 I=1,N
T=0.0
Do 9 J~ltN
IF(IPVOT(j)-fl 13.9913

13 00 23 K=19N
.IF.CIPVOT(O)-fl 43*23,81

43 IF(A8S(T)-AaS(ACJK))) 83,23t23
83 IROW=J

ICOL=K
T=A(JiK)

23 CONTINUE
9 CONTINUE

TPVOT(IC0L)=IPVOT(ICOL) 41
IF(IROW-ICOLI 73,10903~

73 DET=-DET
DO 12 L=19N
T=A (IROWtL)
ACIROWtL)=A( ICOL .L)

IZ AfICOL-L)=T
IF(14) 109,109#33

33 DO 2 L=1,M
T=BQROWtL)
8I'1R0WtLk=8C1COL9L)

2 O(ICDLvL)=T
109 INDEXC19g)=IROW

lNDEX(,.,2l=C0L
PIVOT I)=AlC ICL.TC0L)
DET=DETOPIVOT(l)
A(ICOLsIC0L)=i.
0O 205 L=1.N

205 AUIC0LLkiA(ICOL*L)/PlVO1(1)
TF(M) 3479347*66

66 DO 52 L=19M
52 0flCOL9Lh=8(1COL#L)/PIVOT(1)

347 V0 134 Lhl.,N
JF~t.1-ICOL) 21*134*21

21 T=A(Lr.IC0L)
A(LI91COLhcO.
00 89 L=1.N

89 A(LltL)=AfLi#L)-A(ICOLtL)*Tj
IFWM 134.134*18

FIGURE 8.LISTING OF THE TRANSFER FUNCTION ORDER REDUCTION PROGRAI'
(Continued)
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18 Do 68 L=19M
68 B(LI*L)=B(LI*L)-B(IC0L*L)*T

134 CONTTNUE
135 CONTINUE
222 DO 3 I=19N

L=N-I .1

19 JROW =INDEX(Li1)
JCOL =INDEXCL*2)
00 549 K =1,N
T = AKiJROW)
A (K 9JRUW) =A (KJ COL)
A(KJCOL) =T

549 CONTINUE
i CONTINUE

81 RETURN
END

FIGURE 8.LISTING OF THE TRANSFER FUNCTION ORDER REDUCTION PROCRAI4
(Continuad)
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